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Deep learning-based reconstruction improves image 
quality

Original Research

Abstract
Objective
This study aimed to compare the image quality of  filtered back projection (FBP), adaptive statistical iterative reconstruction-Veo 
(ASIR-V) and the deep learning image reconstruction (DLIR) algorithms in low-dose head CT angiography (CTA). 
Methods 
This prospective study was conducted on 25 patients undergoing head CTA using a 256-slice CT scanner. Patients received 25 mL 
of  iodine contrast (Iopromide, 370 mg I/mL, 3.0 mL/s). Images were reconstructed using DLIR with high settings (DLIR-H) 
and medium settings (DLIR-M), FBP, and ASIR-V with a blending factor of  50% (ASIR-V 50%). CT values, standard deviations, 
signal-to-noise ratios (SNR), and contrast-to-noise ratios (CNR) were measured at the basal ganglia, posterior cranial fossa, center 
of  semiovale, and middle cerebral artery. The edge rise slope (ERS) of  the middle cerebral artery rim was measured to assess vessel 
clarity. Image noise, vessel edge definition, and overall quality were scored on a 5-point scale, while sharpness and clarity were rated 
on a 4-point scale.
Results
FBP images exhibited the highest image noise, as reflected by SD values. DLIR, especially DLIR-H, showed superior noise reduction 
compared to ASIR-V 50%. SNR followed this trend: FBP < ASIR-V 50% < DLIR-M < DLIR-H. Spatial resolution, measured by 
ERS for vessel wall clarity, was higher in DLIR images compared to in ASIR-V 50%. DLIR outperformed conventional iterative 
algorithms in balancing noise reduction and edge clarity, with both DLIR-M and DLIR-H achieving better subjective scores for noise, 
edge definition, and sharpness than ASIR-V 50% and FBP.
Conclusion
DLIR in low-dose head CTA could reduces image noise, preserve natural texture, and enhance image clarity compared with ASIR-V 
and FBP methods.

Keywords: head CT angiography; deep learning image reconstruction; filtered back projection; adaptive statistical iterative 
reconstruction

Introduction
With advancements in CT technology, head and neck CT 
angiography (CTA) has been widely used in clinical practice 
due to its non-invasive nature, high efficiency, and excellent 
diagnostic sensitivity and specificity1,2. However, concerns 
have emerged regarding radiation exposure, potential 
carcinogenic risks and kidney damage caused by contrast 
agents, particularly for patients undergoing repeated scans3. 
As a result, reducing radiation dose and contrast agent 
volume while maintaining image quality has become a key 
focus for researchers4.
Certain anatomical regions, such as the posterior cranial 
fossa, are particularly prone to beam-hardening artifacts 
from dense cranial structures, potentially obscuring subtle 
traumatic lesions5-7. Iterative reconstruction (IR) techniques 
have demonstrated the ability to reduce artifacts and image 
noise, improving image quality in head CT compared to the 

commonly used filtered back projection (FBP) method8,9. 
However, under low-dose conditions, IR can compromise 
spatial resolution, leading to loss of  real texture and may 
introduce unnatural “wax artifacts” as the reconstruction 
weight increases10,11.
To achieve high-quality imaging with lower radiation 
doses, novel reconstruction algorithms have been 
developed. Artificial intelligence (AI), particularly deep 
learning, has introduced innovative methods for CT image 
reconstruction12. Deep learning image reconstruction 
(DLIR), a notable advancement, reduces image noise while 
preserving resolution, outperforming conventional iterative 
reconstruction techniques. One example is GE Healthcare’s 
DLIR algorithm (True Fidelity™, Milwaukee), which utilizes 
a deep neural network (DNN) to correct system defects like 
beam hardening and scattering4. While each reconstruction 
method has its own advantages, there has been no direct 
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comparison of  different reconstruction techniques for head 
CTA imaging.
In this study, we aimed to assess the image quality of  low-
dose head CTA imaging using different reconstruction 
algorithms, including conventional FBP, adaptive statistical 
iterative Reconstruction-Veo (ASIR-V) and deep learning 
image reconstruction (DLIR) methods. Image evaluation 
included both objective and subjective assessments.

Methods and Materials 
Patient collection 
This prospective study was approved by the ethics 
committee of  our hospital (the First Affiliated Hospital of  
Xi’an Jiaotong University), and all participants provided 
informed consent. Data were collected from patients who 
underwent cranial CTA between July and September 2020 
at our hospital. Inclusion criteria: patients requiring head 
CTA. Exclusion criteria: (1) patients with renal insufficiency 
(glomerular filtration rate < 30 mL/min); (2) patients unable 
to perform venipuncture; (3) patients with iodine allergies.

Scanning and injection parameters
All patients underwent head CTA using a 256-slice spiral CT 
scanner (Revolution CT, GE Healthcare, Milwaukee, USA). 
Contrast agent (Iopromide, 370 mgI/mL) was administered 
via the median elbow vein, and scans were manually 
triggered. The scan range extended from the top of  the skull 
to the second cervical vertebra. Scanning parameters were as 
follows: CM volume, 25 mL; injection rate, 3.0 mL/s; tube 
voltage, 80 kVp; and noise index (NI), 15. Automatic tube 
current modulation adjusted to meet the NI setting, followed 
by an additional 40 mL of  saline injected at 4.5 mL/s.

DLIR method 
The DLIR method was built upon specific knowledge of  
the detailed design of  the CT system. Model training started 
with an objective task and selection of  the training data, 
which included the input data to the neural network and the 
corresponding expected output data. Images reconstructed 
with the high-dose dataset produce the ground truth. The 
DLIR method was applied on the low-dose datasets to 
produce an estimation of  the reconstructed images. Since the 
ground truth was known, it was used as the training target 
for the deep learning-based reconstruction engine. After 
the completion of  supervised training, the DLIR model 
had been formulated with all parameters pre-computed and 
fixed, and was able to generate ground truth equivalent high-
quality images based on the low-dose images13.

Image reconstruction 
The original low-dose scan data were reconstructed using 
four methods: ASIR -V 50%, DLIR with medium settings 
(DLIR-M) and DLIR with high settings (DLIR-H), and FBP. 
All reconstruction methods used the same reconstruction 
parameters. ASIR-V 50% was used as the reference standard 
for comparison. Image analysis included both objective and 
subjective evaluations.

Objective evaluation
The reconstructed images were analyzed on a GE Advantage 
workstation (AW4.7) by two radiologists, each with over 
10 years of  CT imaging experience. Mean CT values and 
standard deviations (SD) were measured for the centrum 
semiovale, basal ganglia, posterior cranial fossa, cervical 
musculature, and middle cerebral artery. The signal-to-

noise ratio (SNR) was calculated as SNR= ROI target/SD 
target, and the contrast-to-noise ratio (CNR) as CNR = 
[(ROI vessel – ROI muscle)/SD muscle], using muscle as 
the background. The region of  interest (ROI) areas were 50 
mm² for the semiovale, basal ganglia, posterior cranial fossa, 
and cervical musculature, and 2 mm² for the middle cerebral 
artery. The ROI was placed near the center of  the vessel, 
avoiding calcification and plaques. We used the concept of  
beam hardening artifact (BHA) index introduced by Lin et 
al14 to reflect the changes in non-uniformity of  CT values 
caused by beam hardening artifacts. Specifically, the BHA 
was defined as: BHA =                          , 
where SDp2 represented the SD of  the posterior fossa and 
SDm2 represented the SD of  the neck muscle, used as the 
background in this study. 
Edge rise slope (ERS) was measured using ImageJ software 
(National Institutes of  Health) (http://rsb.info.nih.gov/
ij). A straight segment of  the middle cerebral artery was 
selected, and a line was drawn across the vessel lumen from 
surrounding brain tissue (avoiding calcification and plaque, 
Figure. 1a, b). The Draw Contour tool in the Analysis 
tab generated a spatial position curve against CT values. 
The X-axis represented spatial position, and the Y-axis 
represented CT value. ERS was calculated to reflect vessel 
lumen sharpness15. ERS is defined as the CT value difference 
between the last descending point and the first peak on the 
rapidly ascending curve, divided by the distance between 
these points (Figure. 1c)16. Larger ERS values indicate 
sharper edges. 

Subjective evaluation
Two experienced radiologists, each with over 10 years of  
head CT imaging experience, independently and blindly 
evaluated the qualitative image quality. Any disagreements 
were resolved through discussion to reach a consensus. Image 
noise was graded on a 5-point scale: Grade 0 (slight), Grade 
1 (mild), Grade 2 (moderate), Grade 3 (high), and Grade 4 
(severe). Sharpness and clarity were assessed on a 5-point 
scale: Grade 0 (no blurring), Grade 1 (slightly blurred), 
Grade 2 (moderately blurred), Grade 3 (highly blurred), and 
Grade 4 (severely blurred)17.

Statistical analysis
Statistical analysis was performed using SPSS 22, with 
measurement data expressed as mean ± standard deviation. 
Objective measurements (CT value, SD, SNR, and CNR) 
from the four reconstruction methods (ASIR-V 50%, 
DLIR-M, DLIR-H, and FBP) were compared using one-way 
ANOVA, while subjective image quality scores were analyzed 
using the Kruskal–Wallis test. Consistency was evaluated 
using the Kappa test, where Kappa values ≥ 0.75 indicated 
good consistency, 0.4 < Kappa < 0.75 indicated moderate 
consistency, and Kappa ≤ 0.4 indicated poor consistency. A 
p-value < 0.05 was considered statistically significant.

Results
Based on the inclusion and exclusion criteria, a total of  25 
patients (12 males, 48%), aged 31 to 73 years with a mean age 
of  55.24 ± 12.91 years, were included. All patients underwent 
low-dose head CTA. The mean CT dose index (CTDIvol) 
was (5.69 ± 0.53) mGy, the dose length product (DLP) was 
(183.72 ± 60.96) mGy·cm-1, and the effective dose (ED) 
was (0.34 ± 0.16) mSv (Table1).
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Table 1 Normal information of low-dose head CTA

CTDIvol (mGy） 5.69 ± 0.53

DLP (mGy·cm) 183.72 ± 60.96

ED (mSv) 0.34 ± 0.16

CM (mL) 25

Rate (mL/s) 3.0

Tube voltage(kVp) 80

Age (years) 55.24 ± 12.91

Note: CTDIvol: volumetric CT dose index; DLP: measurement 
length product; ED: effective dose; CM: contrast medium

Quantitative analysis
The results of  the quantitative analysis are presented in Table 
2. CT values and standard deviations (SD) were measured 
for the center of  semiovale, basal ganglia, posterior cranial 
fossa, cervical muscles, and middle cerebral artery, along 
with calculations for SNR, CNR, and the posterior cranial 
fossa BHA index. CT values were comparable across all four 
reconstruction groups. FBP images had the highest SD, while 
DLIR-H images had the lowest, with SD decreasing as DLIR 
levels increased. For SNR and CNR, except for the middle 
cerebral artery, which showed no significant difference (p > 
0.05), DLIR-H and DLIR-M showed superior values in the 
other regions (p < 0.05). DLIR-M and DLIR-H significantly 
reduced BHA in the posterior cranial fossa, with lower SD 
and BHA index values (p < 0.001) (Figure 2). Across all 
ROIs, the SNR and CNR values ranked as follows: DLIR-H 

> DLIR-M > 
ASIR-V 50% 
> FBP. Table 3 
shows the ERS 
results for the four 
r econs t r uc t ion 
m e t h o d s 
and pairwise 
comparisons. The 
difference in ERS 
between the DLIR 
and ASIR-V 50% 
r econs t r uc t ion 
groups was 
s t a t i s t i c a l l y 
significant, with 
DLIR-H having 
the highest mean 
ERS.
Figure 2 showed 
a CTA image 
from a 71-year-
old male, with 
reconstructions 
at the centrum 
semiovale (upper 
row), basal ganglia 
(middle row), and 
posterior cranial 
fossa (lower 
row) using FBP, 

ASIR-V 50%, DLIR-M, and DLIR-H 
(in that order). Identical-colored boxes 
indicate the same reconstruction. The 
FBP images displayed slightly higher noise 
and significant granularity compared to 
ASIR-V 50%. DLIR provided lower 
image noise and improved contrast across 
all regions, while maintaining a clear and 
natural image appearance.

Qualitative evaluation
The results of  the subjective qualitative 
analysis from both radiologists are 
presented in Table 4 and Figure 3. The 
two radiologists showed substantial 
agreement (Kappa value = 0.879). In low-
dose imaging, the subjective evaluation 

Table 2 Quantitative analysis (objective evaluation)

ASIR-V 50% FBP DLIR-M DLIR-H P value
Centrum semiovale

HU 32.37 ± 3.65 32.44 ± 3.73 32.49 ± 5.13 32.77 ± 4.08 0.865
SD 11.15 ± 1.73 17.87 ± 2.40 8.73 ± 1.74 6.69 ± 1.12 ＜0.001

SNR 2.96 ± 0.50 1.84 ± 0.28 3.86 ± 0.95 4.75 ± 0.81 ＜0.001
Basal ganglia

HU 43.06 ± 5.24 43.24 ± 5.80 45.42 ± 4.48 45.75 ± 4.97 0.107
SD 11.63 ± 1.88 18.71 ± 2.96 8.78 ± 1.71 6.65 ± 1.55 ＜0.001

SNR 3.79 ± 0.71 2.36 ± 0.44 5.42 ± 1.47 7.30 ± 2.14 ＜0.001
Middle cerebral artery

HU 347.75 ± 101.88 348.05 ± 101.63 369.79 ± 82.77 369.63 ± 82.07 0.413
SD 13.70 ± 9.82 17.30 ± 10.02 7.93 ± 3.93 5.44 ± 3.06 0.008

SNR 59.90 ± 37.32 67.25 ± 111.42 106.78 ± 98.70 110.04 ± 134.12 0.061
CNR 48.37 ± 54.08 42.00 ± 52.15 42.94 ± 24.33 48.47 ± 24.90 0.776

Posterior fossa
HU 48.28 ± 6.75 48.47 ± 7.06 49.84 ± 5.21 49.11 ± 6.07 0.607
SD 14.02 ± 2.19 21.88 ± 3.23 12.06 ± 2.89 9.49 ± 2.32 0.003

BHA 2.11 ± 0.71 2.78 ± 0.75 2.13 ± 0.61 1.80 ± 0.53 0.03
Neck muscles

HU 59.02 ± 5.25 59.38 ± 5.50 54.88 ± 7.29 56.35±6.27 0.022
SD 10.69 ± 3.45 15.91 ± 4.98 8.06 ± 2.65 6.92 ± 3.50 ＜0.001

Note: Data are presented with mean value ± standard deviation. HU = mean CT number, SD = image noise.

Figure 1 CT attenuation-distance curves obtained at the level of the middle cerebral artery 
in a 71-year-old male patient (c), where the two blue dots indicate the CT values between 
the last descent and the first peak on the rapidly rising curve; (a, b) show the measurement 
method of ERS.
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radiologists) (Radiologist 1: 3.68 ± 0.48 vs. 2.68 ± 0.65; 
Radiologist 2: 3.73 ± 0.46 vs. 2.64 ± 0.58). The overall 
trend in image clarity and sharpness was FBP < ASIR-V 
50% < DLIR-M < DLIR-H.

Discussion 
In this study, we compared the image quality of  DLIR, 
ASIR-V 50%, and FBP reconstruction algorithms for 
low-dose head CT angiography. Our findings showed 
that FBP had the weakest performance in reducing 
image noise and enhancing sharpness. DLIR exhibited 
significant advantages in noise reduction, sharpness, and 
spatial resolution. Compared with ASIR-V 50%, both 
DLIR-M and DLIR-H significantly improved quantitative 
image quality, with lower noise levels and higher SNR 
and CNR. DLIR-H attained the highest overall subjective 
image quality scores.
Berrington et al.18 highlighted the risk of  radiation-
induced cancer. Reducing the radiation dose in head 
and neck CTA is particularly important due to the large 

scanning area and the sensitivity of  
organs such as the lens and thyroid. 
However, lowering the radiation 
dose can degrade CT density 
resolution, increasing noise and 
affecting lesion detection. Advances 
in CT imaging hardware and 
software help compensate for the 
loss of  image quality under low-dose 
conditions. FBP, which reconstructs 
images by applying high-pass filters 
and inverse projection, is fast and 

Table 3 ERS comparison of four reconstruction methods.

ASIR-V 50% FBP DLIR-M DLIR-H
ERS (HU/mm) 109.71 ± 33.65 120.32 ± 32.79 123.70 ± 38.83 126.34 ± 37.61

Pairwise comparisons
ASIR-V50% -- 0.086 0.010 0.016

FBP -- -- 0.624 0.472
DLIR-M -- -- -- 0.621
DLIR-H -- -- -- --

Note: Data are presented with mean value ± standard deviation. 

Table 4 Qualitative analysis of subjective evaluation

ASIR-V 50% PBP DLIR-M DLIR-H p
Radiologist 1

Noise 1.72 ± 0.63 3.18 ± 0.59 0.64 ± 0.49 0.23 ± 0.43 < 0.001
Sharpness 22.68 ± 0.65 1.36 ± 0.49 3.36 ± 0.49 3.68 ± 0.48 < 0.001

Radiologist 2
Noise 1.77 ± 0.53 3.27 ± 0.55 0.64 ± 0.49 0.27 ± 0.46 < 0.001

Sharpness 2.64 ± 0.58 1.27 ± 0.46 3.45 ± 0.51 3.73 ± 0.46 < 0.001
Note: Data are presented with mean value ± standard deviation.

Figure 2 CTA images reconstructed using four methods of the head of a 
71-year-old male

Figure 3 Comparison of image noise (a), sharpness and clarity (b) between the two radiologists

stable but produces increased noise, especially in larger 
patients or low-dose scans19-21. IR methods reduce noise, 
but at high weights, they can introduce blurring artifacts that 
compromise diagnostic accuracy, and limit their clinical use. 
Balancing radiation dose reduction with image quality and 
diagnostic precision remains a challenge. Recently, DLIR 
has emerged as a promising solution, offering superior noise 
reduction and improved image quality in low-dose head CT 

scores indicated a gradual reduction in noise, which 
improved as DLIR intensity increased. FBP had the highest 
noise scores (Radiologist 1: 3.18 ± 0.59; Radiologist 2: 3.27 
± 0.55) and the lowest scores for image sharpness and clarity 
(Radiologist 1: 1.36 ± 0.49; Radiologist 2: 1.27 ± 0.46). The 
DLIR-H group achieved the highest clarity and sharpness 
scores. Compared with ASIR-V 50%, DLIR-H showed 
significant improvements in sharpness (p < 0.001 for both 
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compared to other reconstruction algorithms22.
DLIR enhances CT image quality using deep convolutional 
neural networks (DNNs). Trained on low-dose, high-quality 
FBP datasets, DLIR efficiently distinguishes between signal 
and noise, suppressing noise without affecting anatomical 
or pathological structures16. Technical details of  the DLIR 
algorithm (True Fidelity™) are available in the manufacturer’s 
white paper23. Alagic Z et al.24 demonstrated that trauma head 
CT images reconstructed with DLIR, particularly DLIR-H, 
were superior to those reconstructed with ASIR. Similarly, 
Nagayama Y et al.22 found that DLIR provided lower image 
noise, higher gray-white matter contrast, and improved CNR 
compared with standard-dose reconstructions. In our study, 
DLIR significantly reduced noise in the posterior cranial 
fossa compared with ASIR-V 50%, aligning with findings 
by Alagic Z et al.24 in trauma CT scans. Overall, DLIR 
processing significantly enhanced the image quality of  low-
dose head CTA.
In our study, we compared the image quality of  ASIR-V 
50%, DLIR (medium and high levels), and FBP. Image noise, 
reflected by SD values, was highest in FBP images. DLIR, 
especially DLIR-H, demonstrated superior noise reduction 
compared to ASIR-V 50%. SNR followed the trend: FBP < 
ASIR-V 50% < DLIR-M < DLIR-H. Spatial resolution was 
objectively assessed using ERS to evaluate vessel wall clarity, 
with DLIR images showing sharper vessel walls than ASIR-V 
50%. DLIR outperformed conventional iterative algorithms 
in balancing noise and edge clarity, and both DLIR-M and 
DLIR-H achieved higher subjective scores in image noise, 
edge definition, and sharpness compared to ASIR-V 50% 
and FBP.
Our study still has several limitations. First, the small sample 
size may introduce bias, and future studies should include 
more cases for further validation. Second, our research 
focused solely on low-dose imaging; in the future, we plan to 
introduce a standard-dose group to compare image quality 
across different reconstruction techniques. Third, we only 
evaluated three reconstruction algorithms, and future studies 
will explore additional methods to improve image quality.

Conclusion 
In conclusion, our study demonstrated that DLIR preserved 
image clarity and sharpness in low-dose head CTA compared 
with the ASIR-V and FBP algorithms, with DLIR-H 
achieving the highest image quality scores.
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