
Malawi Medical Journal 37 (3); 193-206 September 2025 Reproducible R workflow 193

https://dx.doi.org/10.4314/mmj.v37i3.10

© 2025 Kamuzu University of Health Sciences. This work is licensed under the Creative Commons Attribution 4.0 International License.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Wingston Felix Ng’ambi1, Adamson Sinjani Muula2-4

1. Health Economics and Policy Unit, Department of Health Systems and Policy, Kamuzu University of Health Sciences, Lilongwe, Malawi
2. Africa Centre of Excellence in Public Health and Herbal Medicine (ACEPHEM), Kamuzu University of Health Sciences, Blantyre, Malawi
3. Professor and Head, Department of Community and Environmental Health, School of Global and Public Health
4. President, ECSA College of Public Health Physicians, Arusha, Tanzania

A reproducible R workflow to preserve variable and
value labels in Stata, SPSS, and SAS datasets for
transparent and reproducible health research

Teaching Corner

Abstract
Introduction
Large-scale health surveys like the Demographic and Health Surveys (DHS) and WHO STEPS are essential for tracking health trends
and guiding policies in low- and middle-income countries. However, when these datasets are imported into tools like R, they often lose
crucial metadata, variable and value labels, turning clear categories into cryptic codes. This slows analysis, risks errors, and weakens
data reuse.
Methods
We developed a reproducible workflow in R to import and process survey data while preserving variable and value labels. Using open-
source packages such as haven, labelled, and tidyverse, we automated reading of datasets, extraction of metadata, replacement of
codes with readable labels, and renaming of variables with full descriptions. The workflow was designed to be modular, easy to adapt,
and accessible for analysts with basic R skills.
Results
We tested the workflow on the contraceptive use module from the 2015/16 Malawi DHS and the tobacco use module from Malawi’s
Global Youth Tobacco Survey. Without our process, variables appeared as vague codes (e.g., v312) and responses as plain numbers.
After applying our workflow, these were transformed into clear, labelled categories like “Injectable” or “Never Married.” Frequency
tables generated from the cleaned data were easier to interpret and share. This automated approach saved several hours of manual
recoding and reduced the risk of errors.
Conclusion
By maintaining metadata, our workflow improves transparency, reproducibility, and efficiency in digital health research. This supports
better training, clearer communication, and more reliable use of health data for policy and program decisions.

Keywords: digital health, data harmonisation, metadata preservation, health surveys, reproducible research

Introduction
Routine health data collection in low- and middle-income
countries (LMICs) provided information at regular intervals
on services and activities delivered in health facilities1.
Programs like the Demographic and Health Surveys (DHS)
and WHO’s STEPwise approach to noncommunicable
disease surveillance (STEPS) have become the backbone of
health monitoring in these settings. These large-scale surveys
gather rich information on population health, providing
critical evidence for policy and program decisions2. As LMICs
increasingly adopt digital health strategies, ensuring that this
routine data retains essential metadata, such as variable and
value labels, is key for transparent analyses, comparability
across studies, and building reliable digital health systems.
In digital health research, large-scale datasets such as the
Demographic and Health Surveys (DHS)3 and WHO STEP
wise surveys (STEPS)4 play a critical role in informing public
health policy, monitoring health trends, and guiding decision-
making. These datasets come with rich metadata, including
variable labels that explain what each column represents, and

value labels that describe coded responses5. However, when
researchers import these files into statistical software like R,
much of this metadata can be lost or mishandled. As a result,
variables appear with cryptic names (e.g., v106, q102) and
responses are shown as numbers without context (e.g., 1, 2,
3), making interpretation difficult and error-prone3.
Losing this metadata not only slows down analysis but
also increases the risk of misinterpretation, especially
for researchers who are new to the dataset or working in
collaborative teams5. In digital health, where datasets are
often reused across countries and over time, preserving
labels ensures consistency, transparency, and reproducibility6.
When labels are not retained, important details such as the
meaning of categories, skip patterns, and question wording
may be overlooked7. This can lead to incorrect analyses
and conclusions, weakening the quality of research and its
potential to inform policy or digital interventions8. This
study addresses a common but under-discussed problem
in digital health data management: the loss of variable and
value labels during data import. By presenting a practical and

Malawi Medical Journal 37 (3); 193-206 September 2025 Reproducible R workflow 194

https://dx.doi.org/10.4314/mmj.v37i3.10

reproducible workflow in R, we aim to support researchers,
especially those in low- and middle-income countries, in
maintaining data integrity from the start5. Our approach
ensures that health data retains its meaning and context,
making analysis more accurate, communication clearer, and
results easier to share and validate. In doing so, this study
contributes to better data stewardship and more reliable
digital health evidence.

Methods
This study used the R programming language to develop
a simple and reproducible workflow for importing and
working with health survey data while preserving variable
and value labels9,10. We relied on key packages including
haven (to read SPSS and Stata files)11, labelled (to extract and
handle metadata)12, and tidyverse (for data wrangling and
cleaning)13. These tools were chosen because they are open-
source, widely used in public health analytics, and compatible
with a wide range of data formats14. Together, they allow
researchers to retain the full descriptive structure of survey
data, which is often lost in traditional data import steps.
To ensure the workflow is easy to replicate and adapt, all
code was written in a modular format and documented using
standard R scripts/markdown comments15. The process
includes setting the file path, importing the dataset with
all labels intact, extracting variable descriptions, flattening
value labels into a readable format, and generating labelled
frequency tables. Outputs such as CSVs for metadata and
summary tables can be shared with collaborators or used
directly in reports. The script is adaptable to any dataset and
is designed to be used by analysts with basic R skills.
As proof of concept, we applied the workflow to two
common modules: the contraceptive use section of the
2015/6 Malawi DHS (MWIR7HFL.DTA) from Measure
DHS and the tobacco consumption section of a Global
Youth Tobacco Survey (MWI2009.dta) from NCD monitor.
In both cases, we successfully preserved metadata that clearly
defined coded responses such as types of contraceptive
methods and levels of alcohol use. By maintaining the
link between values and their labels, we improved the
interpretability of results and reduced the risk of analytic
errors10. These examples highlight how the approach can be
used to support accurate, reproducible, and policy-relevant
analysis in digital health studies15.

Ethical consideration
This study did not involve the collection of new data from
human participants. Instead, we used publicly available
datasets from the 2015/16 Malawi Demographic and Health
Survey (DHS) (https://dhsprogram.com/data/dataset_
admin/login_main.cfm) and the Malawi Global Youth
Tobacco Survey (https://extranet.who.int/ncdsmicrodata/
index.php/catalog/147/variable/V212). These datasets
were fully anonymized, with all personal identifiers removed
before we accessed them. We followed all data use agreements
set by the data custodians. Our work mainly served as a
technical proof of concept to show how metadata can be
preserved and linked to coded values, making analyses clearer
and reducing mistakes. By doing this, we aimed to support
more transparent and trustworthy research that can inform
health policies without compromising participant privacy.

Results
Workflow to preserve variable and value labels in Stata, SPSS,

and SAS datasets.
To preserve variable and value labels when working with
datasets from Stata, SPSS, or SAS, start by using specialized
R packages that can handle these formats without stripping
metadata used the workflow in Figure 1. The haven package
is especially useful because it reads .dta (Stata), .sav (SPSS),
and .sas7bdat (SAS)11 files while keeping variable labels
(describing what each column means) and value labels
(explaining coded responses). Once imported, you can use
the labelled package to easily view, manage, and convert these
labels 12. For instance, you can extract variable descriptions
into a separate table for documentation or apply value
labels directly, so coded numbers instantly show up as clear
categories like “Married” or “Never smoked.” After reading
in and cleaning each dataset, the workflow continues by
applying labels to the data so they become part of summaries,
plots, and exported files. Before exporting, rename columns
to include full variable labels for better readability outside
R. Finally, save the fully labelled dataset as an RDS file to
preserve the structure for future analysis, or write it out to
Excel or CSV along with a key that lists all variable and value
meanings. This approach ensures your data always carries the
full context, making it easier to interpret, share, and trust;
whether it originally came from Stata, SPSS, or SAS.

Figure 1: A seamless R workflow for cleaning, labelling, and
merging survey data

Merits of proposed workflow
The workflow revealed significant differences in how data
appears and is understood before and after label preservation.
For instance, in the contraceptive use module of the DHS
dataset, the variable v312 appears as a numeric field without
labels when imported using default methods. Without labels,
values such as 1, 2, or 3 are meaningless to analysts unfamiliar
with the coding. After applying the proposed workflow, those
same values are automatically linked to their full descriptions,
such as “Pill,” “IUD,” or “Injectable,” allowing for accurate
interpretation without manual code lookups or referencing
external codebooks (see Figure 2 (code: MMJ_Paper_Script_
Labelling_Values_13_July_2025_FINAL.R), Figure 3 (code:
MMJ_Paper_Script_Labelling_Values_13_July_2025_
FINAL.R) and Figure 4 (code: MMJ_Paper_Script_13_

Malawi Medical Journal 37 (3); 193-206 September 2025 Reproducible R workflow 195

https://dx.doi.org/10.4314/mmj.v37i3.10

July_2025_FINAL.R)).

Figure 2: A sample of the extracted value labels from the Malawi
2015/6 women dataset

Figure 3: A sample of the extracted variable labels from the Malawi
2015/6 women dataset

We also compared frequency tables generated with and
without labels. Without labels, output tables contain only
numbers, which require the user to cross-check codes in
the original questionnaire or recode them manually. In
contrast, when using the labelled data workflow, frequency
tables present clean, readable summaries such as “Never
Married,” “Married,” or “Widowed,” making it immediately
clear what the distributions represent. This clarity improves
the usability of outputs for presentations, reports, and peer-
reviewed publications, especially for audiences with limited
statistical training.

Option A: Frequency tables with vs. without labels

Without labels

Code:

vars_to_freq <- c(“v502”, “v025”, “v106”)

Create output folder if needed

if (!dir.exists(“Output”)) dir.create(“Output”)

for (var in vars_to_freq) {

 if (var %in% names(women)) {

 # Use table() to count values

 tbl <- table(women[[var]])

 # Turn into data frame

 freq_table <- as.data.frame(tbl)

 names(freq_table) <- c(“value”, “count”)

 # Calculate percentage

 freq_table$percent <- round(100 * freq_table$count /
sum(freq_table$count), 1)

 # Save CSV

 write_csv(freq_table, paste0(“Output/frequency_”, var,

Figure 4: Combination of data with both variable and value labels for the 2009 Malawi Global Youth Tobacco Survey

Malawi Medical Journal 37 (3); 193-206 September 2025 Reproducible R workflow 196

https://dx.doi.org/10.4314/mmj.v37i3.10

“.csv”))

 print(paste(“Saved frequency table for”, var))

 } else {

 warning(paste(“Variable”, var, “not found in dataset”))

 }

}

Output:

V502: Marital status

V025: Area of residence

V106: Level of education

With labels

Code:

vars_to_freq <- c(“v502”, “v025”, “v106”) # You may need
to adjust names based on actual dataset

Function to create and save frequency table for each
variable

for (var in vars_to_freq) {

 if (var %in% names(women)) {

 freq_table <- women %>%

 mutate(temp = as_factor(.data[[var]])) %>%

 count(temp, name = “count”) %>%

 mutate(percent = round(100 * count / sum(count), 1))
%>%

 rename(label = temp)

 write_csv(freq_table, paste0(“frequency_”, var, “.csv”))

 } else {

 warning(paste(“Variable”, var, “not found in dataset”))

 }

}

Ouput

V502: Marital status

V025: Area of residence

V106: Level of education

Option B: Frequency tables for the variable and
value labels transformed
The workflow not only improves readability but also reduces
time and errors. Manual recoding and referencing of
external codebooks are time-consuming, particularly in large
datasets with hundreds of variables. By automating label
extraction and applying consistent formatting, our approach
helps analysts avoid common mistakes such as mislabeling
variables or misclassifying categories. In our case examples,
label preservation and formatting saved several hours of
manual work and eliminated the need for guesswork or
repeated code verification, making the data analysis process
more efficient and reliable.

After running the code (MMJ_Paper_Script_13_July_2025_
FINAL.R) on mwi2009.dta, we generated a dataset with
both variable and value labels called merged_data.csv. Then
we run the code below.

Make sure packages are loaded

library(dplyr)

library(readr)

List of variables

vars_to_summarise <- c(“Tried smoking”, “Cigarettes per
day”, “Own cigarette product brand logo”)

Loop over each variable

for (var in vars_to_summarise) {

Malawi Medical Journal 37 (3); 193-206 September 2025 Reproducible R workflow 197

https://dx.doi.org/10.4314/mmj.v37i3.10

 freq_table <- merged_data %>%

 count(!!sym(var), name = “count”) %>%

 mutate(percent = round(100 * count / sum(count), 1))
%>%

 rename(value = !!sym(var))

 # Print to console

 print(paste(“Frequency table for”, var))

 print(freq_table)

}

This code produced the following output:

Demerits of the proposed workflow

While this workflow greatly improves efficiency and helps
keep data clear and well-labelled, it does come with a few
downsides. It relies heavily on R and specific packages, which
means users need at least basic R skills to run or adapt it.
If variable names or label structures change too much
across files, the automated steps might not work perfectly
and still require manual checks. Also, since it saves outputs
in R-specific formats like .rds, people using other software
may need extra steps to read the data. In short, while the
workflow reduces many errors and saves time, it still needs
some technical know-how and careful oversight to handle
unusual or inconsistent datasets.

Converting the data to show variable and value
labels
Converting the data to show both variable and value labels
was a crucial part of our process. Using our R script, we
carefully unpacked each dataset to pull out the hidden
meanings behind cryptic codes and column names5,12. We
replaced raw numeric codes with their real-world labels, like
turning a plain 1 or 0 into clear categories such as “Yes” or
“No.” At the same time, we renamed the columns to display
full variable labels, so instead of vague names like q101, we
now had straightforward titles like “Current tobacco use.”
This not only made the data far easier to read and understand
but also reduced the chance of mistakes during analysis. By
doing this, we transformed a dense, coded dataset into a

clean, human-friendly table that clearly tells the story behind
the numbers.

Extension when combining data from multiple
surveys
To prepare multiple survey datasets for easy analysis, we first
set up a workflow in R to automatically read and clean all .dta
files in a specified folder. Using packages like haven, dplyr,
tidyr, and labelled, the script reads each dataset, extracts the
variable labels (like “Type of tobacco used”) and the value
labels (like 1 = “Yes”, 0 = “No”), and saves these as separate
files13. It then attaches the value labels back to the actual
data, replacing raw codes with meaningful descriptions.
This makes the dataset more readable and minimizes the
chance of misinterpreting codes16. To avoid losing context,
the script also renames the columns using their full variable
labels, keeping them informative even outside specialized

software like Stata17. Once all individual
datasets are cleaned and labelled, the
script gathers them into one combined
file16. Before merging, it converts key
survey design identifiers like stratum
and psu into character type to prevent
merge errors. The final merged dataset
is then saved both as an RDS file for
future analysis in R and as an Excel
file for easy sharing17. This automated
process ensures consistency, saves time,
and gives a tidy dataset ready for analysis
or reporting18,19.

Below are the key code snippets:

1.	 Loop through all .dta files and
process them

dta_files <- list.files(data_dir, pattern = “\\.dta$”, full.
names = TRUE)

walk(dta_files, process_file)

2.Inside process_file, replace codes with labels and rename
columns

Apply value labels

for (var in names(data)) {

 val_lab <- value_labels_long %>% filter(variable == var)

 if (nrow(val_lab) > 0) {

 lookup <- setNames(as.character(val_lab$label), val_
lab$code)

 data[[var]] <- recode(as.character(data[[var]]), !!!lookup)

 }

}

Rename columns with variable labels

data <- data %>% rename_with(~ rename_vector[.x], .cols

Malawi Medical Journal 37 (3); 193-206 September 2025 Reproducible R workflow 198

https://dx.doi.org/10.4314/mmj.v37i3.10

= names(data))

3. Merge all cleaned datasets and export

cleaned_files <- list.files(data_dir, pattern = “_cleaned\\.
rds$”, full.names = TRUE)

merged_data <- map_dfr(cleaned_files, function(file) {

 df <- readRDS(file)

 df <- df %>% mutate(across(any_of(c(“stratum”, “psu”)),
as.character))

}, .id = “source_file”)

saveRDS(merged_data, file = file.path(data_dir,
“gtys_2000_2021.rds”))

write_xlsx(merged_data, path = file.path(data_dir,
“gtys_2000_2021.xlsx”))

Harmonisation of datasets
When working with surveys collected across different years
or from multiple sources, the data often comes in slightly
different shapes9. Variable names might change, codes for
answers may be inconsistent, or important labels could be
missing. Without careful cleaning, merging these datasets
can easily produce errors or misleading results. That’s why
data harmonisation is a key step before any analysis. In this
work, we automated harmonisation using R10. Each dataset
was first read in and cleaned by replacing raw codes (like
1, 2, 3) with their actual meanings (like “Male”, “Female”,
“Other”), based on the value labels stored in the original files.
We also ensured that the columns carried clear descriptive
names by applying the variable labels. After each individual
dataset was cleaned and saved, we combined them into
one big file. Before merging, we converted critical survey
design identifiers such as stratum and psu into character
type to keep things consistent. This entire process helped
us standardise multiple datasets, making sure they spoke the
same “language”. The result was a single tidy dataset that was
ready for robust, error-free analysis and easy interpretation16.

Time saved or errors avoided
One of the biggest wins from this approach was the time it
saved and the errors it helped us avoid. By automating the
process of applying variable and value labels5, we skipped
the tedious and error-prone manual recoding that often
leads to mistakes19. This meant we did not have to keep
checking codebooks or guessing what each number stood
for. With clearly labelled data from the start, we avoided
misclassifying responses or running faulty analyses based on
misunderstood codes9. In short, this streamlined workflow
not only cut down hours of repetitive work but also gave us
cleaner results we could trust.

Discussion
Preserving variable and value labels in health datasets is more
than a technical concern it directly affects the reproducibility
and integrity of digital health research20,21. Inconsistent
or missing metadata leads to misinterpretation, delays in
analysis, and difficulties in replicating findings22. This is
particularly problematic in digital health, where data-driven
decisions influence policies, resource allocation, and program
design23. Our approach supports reproducible research

by ensuring that survey data maintains its full descriptive
structure throughout the analytic workflow, allowing others
to understand, verify, and replicate results with confidence.

The implications for training are also significant24. Many
researchers and students in low- and middle-income
countries work with large datasets like DHS or STEPS25,26
but often lack access to proprietary software or detailed
technical support. Providing a reproducible R workflow that
maintains metadata helps bridge this gap10. It makes these
datasets more accessible and easier to use in teaching settings,
enabling new users to focus on data interpretation rather
than data cleaning or codebook decoding. This contributes
to building local capacity in data science and strengthens the
pipeline of skilled analysts in digital health27.
Moreover, preserving labels enhances data sharing and
collaboration12. When datasets are stripped of labels, shared
files become harder to understand or reuse, especially across
teams or institutions25,28. By exporting variable descriptions
and value labels alongside the cleaned dataset, researchers
can ensure that collaborators and secondary users interpret
the data correctly29. This is especially valuable in multi-
country or multi-year studies, program evaluations, or open
data platforms, where keeping consistency and meaning
across datasets is essential.
Finally, this approach supports the broader goals of open
science30,31,32. By using open-source tools and emphasizing
transparency in the data preparation process, we help make
digital health research more inclusive and efficient 33 34.
Analysts can document their data workflows clearly, share
code and metadata publicly, and contribute to more equitable
and trustworthy use of health data 35 36. As the demand for
real-time data and reproducible evidence grows, workflows
like this one become increasingly important for the future of
global digital health.
We recommend that researchers and analysts working with
health survey data adopt this workflow early in their projects
to maintain data clarity and avoid time-consuming manual
relabelling later. It is best to keep a consistent folder structure,
document each step, and always save intermediate outputs
with clear filenames37. This makes it easier to track changes
and revisit your work if needed. We also suggest sharing
both the cleaned datasets and accompanying metadata files,
so collaborators can understand exactly what each variable
and value means without digging into codebooks.

All the tools used in this workflow; haven 11, labelled 12,
dplyr38, and tidyr13; are freely available as R packages on
CRAN. The full scripts that power this process, including
functions to read, label, clean, and merge datasets, are
provided in well-commented R file that can be easily adapted
to different surveys. To make this workflow even more
accessible, we also highlight the opportunity to develop
equivalent scripts in Python using libraries such as pandas,
pyreadstat, and numpy39. This would allow analysts more
familiar with Python to perform the same steps of importing
data, preserving variable and value labels, recoding, and
merging multiple survey datasets40. The R script has been
included in the paper as supplementary material. This way,
other teams can replicate the workflow, adapt it to their
own data, develop Python versions, and contribute further
improvements.

Malawi Medical Journal 37 (3); 193-206 September 2025 Reproducible R workflow 199

https://dx.doi.org/10.4314/mmj.v37i3.10

Author contributions
WFN= Conceptualisation and drafting the paper and code.
ASM=Reviewing the paper and the code. Both authors
reviewed and approved the paper together with the code.

Competing interest
None

Funding
None

References
1.Hung, Y. W., Hoxha, K., Irwin, B. R., Law, M. R. & Grépin, K. A.
Using routine health information data for research in low- and middle-
income countries: a systematic review. BMC Health Serv. Res. 20, 790
(2020).

2.Institute of Medicine (US) Committee on Assuring the Health of the
Public in the 21st Century. The Future of the Public’s Health in the 21st
Century. Washington (DC): National Academies Press (US); 2002. 2,
Understanding Population Health and Its Determinants. Available from:
Https://Www.Ncbi.Nlm.Nih.Gov/Books/NBK221225/.

3.Croft, Trevor N., Allen, Courtney K., Zachary, Blake W., et al. 2023.
Guide to DHS Statistics. Rockville, Maryland, USA: ICF.

4.Riley, L. et al. The World Health Organization STEPwise Approach
to Noncommunicable Disease Risk-Factor Surveillance: Methods,
Challenges, and Opportunities. Am. J. Public Health 106, 74–78 (2016).

5.Buttliere, B. Adopting standard variable labels solves many of
the problems with sharing and reusing data. Methodol. Innov. 14,
205979912110266 (2021).

6.Condon, P., Simpson, J. & Emanuel, M. Research data integrity: A
cornerstone of rigorous and reproducible research. IASSIST Q. 46,
(2022).

7.Arslan, R. C. How to Automatically Document Data With the
codebook Package to Facilitate Data Reuse. Adv. Methods Pract.
Psychol. Sci. 2, 169–187 (2019).

8.Shreffler J, Huecker MR. Common Pitfalls In The Research Process.
[Updated 2023 Mar 6]. In: StatPearls [Internet]. Treasure Island (FL):
StatPearls Publishing; 2025 Jan-. Available from: Https://Www.Ncbi.
Nlm.Nih.Gov/Books/NBK568780/.

9.Kołczyńska, M. Combining multiple survey sources: A reproducible
workflow and toolbox for survey data harmonization. Methodol. Innov.
15, 62–72 (2022).

10.Shimizu, I. & Ferreira, J. C. Losing your fear of using R for statistical
analysis. J. Bras. Pneumol. Publicacao Of. Soc. Bras. Pneumol. E
Tisilogia 49, e20230212 (2023).

11.Wickham H, Miller E, Smith D (2025). haven: Import and Export
‘SPSS’, ‘Stata’ and ‘SAS’ Files. R package version 2.5.5, https://haven.
tidyverse.org. in.

12.Larmarange J (2025). _labelled: Manipulating Labelled Data_.
doi:10.32614/CRAN.package.labelled <https://doi.org/10.32614/
CRAN.package.labelled>, R package version 2.14.1, <https://
CRAN.R-project.org/package=labelled>. in.

13.Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw.
4, 1686 (2019).

14.Daswito, R., Besral, B. & Ilmaskal, R. Analysis Using R Software:
A Big Opportunity for Epidemiology and Public Health Data Analysis.
J. Health Sci. Epidemiol. 1, 1–5 (2023).

15.Peikert, A., van Lissa, C. J. & Brandmaier, A. M. Reproducible
Research in R: A Tutorial on How to Do the Same Thing More Than
Once. Psych 3, 836–867 (2021).

16.Wickham, H. Tidy data. Am. Stat. 14, (2014).

17.Buttliere, B. Adopting standard variable labels solves many of

the problems with sharing and reusing data. Methodol. Innov. 14,
20597991211026616 (2021).

18.Hosseinzadeh, M. et al. Data cleansing mechanisms and approaches
for big data analytics: a systematic study. J. Ambient Intell. Humaniz.
Comput. 14, 1–13 (2021).

19.Nguyen, T., Nguyen, H.-T. & Nguyen-Hoang, T.-A. Data quality
management in big data: Strategies, tools, and educational implications.
J. Parallel Distrib. Comput. 200, 105067 (2025).

20.Condon, P., Simpson, J. & Emanuel, M. Research data integrity:
A cornerstone of rigorous and reproducible research. IASSIST Q. 46,
(2022).

21.Syed, R. et al. Digital Health Data Quality Issues: Systematic
Review. J. Med. Internet Res. 25, e42615 (2023).

22.Cai, L. & Zhu, Y. The Challenges of Data Quality and Data Quality
Assessment in the Big Data Era. Data Sci. J. 14, (2015).

23.Ulrich, H. et al. Understanding the Nature of Metadata – A Systematic
Review. J. Med. Internet Res. (2020) doi:10.2196/25440.

24.Custer, G. F., van Diepen, L. T. A. & Seeley, J. Student perceptions
towards introductory lessons in R. Nat. Sci. Educ. 50, e20073 (2021).

25.	 Witter, S., Sheikh, K. & Schleiff, M. Learning health systems
in low-income and middle-income countries: exploring evidence and
expert insights. BMJ Glob. Health 7, (2022).

26.Riley, L. et al. The World Health Organization STEPwise Approach
to Noncommunicable Disease Risk-Factor Surveillance: Methods,
Challenges, and Opportunities. Am. J. Public Health 106, 74–78 (2016).

27.Botero-Mesa, S. et al. Leveraging human resources for outbreak
analysis: lessons from an international collaboration to support the sub-
Saharan African COVID-19 response. BMC Public Health 22, (2022).

28.Buttliere, B. Adopting standard variable labels solves many of
the problems with sharing and reusing data. Methodol. Innov. 14,
205979912110266 (2021).

29.Arslan, R. C. How to Automatically Document Data With the
codebook Package to Facilitate Data Reuse. Adv. Methods Pract.
Psychol. Sci. 2, 169–187 (2019).

30.Williams, T. & Taqa, A. Open Science Initiatives: Advancing
Collaborative and Transparent Scientific Research. 8, 3006–2853
(2020).

31.Chiware, E. R. T. & Lockhart, J. Open Science. in Encyclopedia
of Libraries, Librarianship, and Information Science (First Edition)
(eds. Baker, D. & Ellis, L.) 440–446 (Academic Press, Oxford, 2025).
doi:10.1016/B978-0-323-95689-5.00061-4.

32.Van Vaerenbergh, Y., Hazée, S. & Zwienenberg, T. J. Open Science: A
Review of Its Effectiveness and Implications for Service Research. J. Serv.
Res. 10946705251338461 (2025) doi:10.1177/10946705251338461.

33.Fitzpatrick, P. J. Improving health literacy using the power of digital
communications to achieve better health outcomes for patients and
practitioners. Front. Digit. Health 5, 1264780 (2023).

34.Chidera, V. et al. Data analytics in healthcare: A review of patient-
centric approaches and healthcare delivery. World J. Adv. Res. Rev. 21,
1750–1760 (2024).

35.Cascini, F. et al. Health data sharing attitudes towards primary and
secondary use of data: a systematic review. EClinicalMedicine 71,
102551 (2024).

36.Ugochukwu, A. I. & Phillips, P. W. B. Open data ownership
and sharing: Challenges and opportunities for application of FAIR
principles and a checklist for data managers. J. Agric. Food Res. 16,
101157 (2024).

37.Smith A. (2018). An Example Directory Structure. GitHub.
Retrieved from Https://Github.Com/Aosmith16/Aosmith/Blob/Master/
Content/Post/2018-10-29-an-Example-Directory-Structure.Rmd.

Malawi Medical Journal 37 (3); 193-206 September 2025 Reproducible R workflow 200

https://dx.doi.org/10.4314/mmj.v37i3.10

38.Wickham H, François R, Henry L, Müller K, Vaughan D (2025).
Dplyr: A Grammar of Data Manipulation. R Package Version 1.1.4,
Https://Dplyr.Tidyverse.Org.

39.Kabir, M. A., Ahmed, F., Islam, M. M. & Ahmed, Md. R. Python For
Data Analytics: A Systematic Literature Review Of Tools, Techniques,
And Applications. Acad. J. Sci. Technol. Eng. Math. Educ. 4, 134–154
(2024).

40.Kebede Gebre, K. & Wesenu, M. Statistical Data Analysis Using
Python. (2024).

SUPPLEMENTARY FILES:

Load required libraries

These packages help you read data, handle labels, and clean datasets.
library(haven) # for reading Stata (or SPSS/SAS) files
library(dplyr) # for data manipulation
library(tidyr) # for reshaping data
library(tibble) # for working with tibbles
library(labelled) # for handling variable and value labels
library(readr) # for writing CSV files

Set file path

Adjust this to where your DHS or other data file is saved on your computer.
file_path <- "C:/Users/LENOVO/Documents/GitHub/Transparent_digital_health_2025/MWIR7HFL.DTA"

Read DHS dataset

This reads the Stata file into R. 'women' is now your data frame.
women <- read_dta(file_path)

1. Export variable labels

Many DHS datasets have descriptions for each variable (like "Age in 5-year groups").
This saves those descriptions into a CSV so you know what each variable means.
var_labels <- var_label(women) %>%
 enframe(name = "variable", value = "description")

write_csv(var_labels, "variable_labels.csv")
print("Saved variable labels to 'variable_labels.csv'.")

2. Export value labels

For categorical variables (like 1 = Rural, 2 = Urban), we save the mapping.
value_labels <- lapply(women, function(x) attr(x, "labels"))
value_labels_df <- enframe(value_labels, name = "variable", value = "labels") %>%
 filter(!sapply(labels, is.null))

Turn into a long format table: each row is variable, code, label.
value_labels_long <- value_labels_df %>%
 unnest_longer(labels) %>%

Malawi Medical Journal 37 (3); 193-206 September 2025 Reproducible R workflow 201

https://dx.doi.org/10.4314/mmj.v37i3.10

 rename(code = labels_id, label = labels)

write_csv(value_labels_long, "value_labels.csv")
print("Saved value labels to 'value_labels.csv'.")

3. List labelled (categorical) variables

This helps you see which variables have categories (like sex, region).
labelled_vars <- names(women)[sapply(women, function(x) !is.null(attr(x, "labels")))]
print("Variables with value labels (categorical variables):")
print(labelled_vars)

4. Create frequency tables

We'll pick some example variables. Adjust these to your dataset.
vars_to_freq <- c("v502", "v025", "v106") # e.g., marital status, place of residence, education

For each variable:
- Convert it to labelled factors so we see categories (not just numbers).
- Count how many observations fall into each category.
- Calculate percentages.
- Save the table as a CSV.

for (var in vars_to_freq) {
 if (var %in% names(women)) {
 freq_table <- women %>%
 mutate(temp = as_factor(.data[[var]])) %>% # convert to factor using labels
 count(temp, name = "count") %>% # count frequency
 mutate(percent = round(100 * count / sum(count), 1)) %>% # calculate %
 rename(label = temp) # nicer name

 # Save to CSV
 write_csv(freq_table, paste0("frequency_", var, ".csv"))
 print(paste("Saved frequency table for", var, "to", paste0("frequency_", var, ".csv")))
 } else {
 warning(paste("Variable", var, "not found in dataset"))
 }

Malawi Medical Journal 37 (3); 193-206 September 2025 Reproducible R workflow 202

https://dx.doi.org/10.4314/mmj.v37i3.10

##
LOAD REQUIRED LIBRARIES
##
library(haven) # for reading Stata (.dta) files while keeping labels
library(dplyr) # for data manipulation (filter, mutate, rename, etc.)
library(tidyr) # for reshaping data (unnest_longer)
library(tibble) # for turning named lists into data frames
library(labelled) # for handling variable and value labels
library(purrr) # for looping over lists elegantly
library(readr) # for reading and writing files like CSV

##
SET DATA DIRECTORY
##
This is the folder containing all your .dta files
data_dir <- "C:\\Users\\LENOVO\\Documents\\GitHub\\Transparent_digital_health_2025"

##
LIST ALL .dta FILES IN THE FOLDER
##
dta_files <- list.files(data_dir, pattern = "\\.dta$", full.names = TRUE)

##
DEFINE A FUNCTION TO PROCESS EACH FILE
##
process_file <- function(file) {

 ## READ THE DATASET
 data <- read_dta(file)

 ## If these variables exist, assign them clear variable labels
 if ("year" %in% names(data)) var_label(data$year) <- "Year"
 if ("country" %in% names(data)) var_label(data$country) <- "Country"

 ## Get base file name (without extension) for naming output files
 base_name <- tools::file_path_sans_ext(basename(file))

 ##
 ## 1. EXTRACT AND SAVE VARIABLE LABELS
 ##
 # Variable labels describe what each variable means (like 'Current smoking status')
 var_labels <- var_label(data) %>%
 enframe(name = "variable", value = "description")

 # Save them as an RDS file for easy reference later
 saveRDS(var_labels, file.path(data_dir, paste0(base_name, "_var_labels.rds")))

 ##
 ## 2. EXTRACT AND SAVE VALUE LABELS
 ##
 # Value labels describe what the coded values mean (like 1 = 'Yes', 2 = 'No')
 value_labels <- lapply(data, function(x) attr(x, "labels"))

Malawi Medical Journal 37 (3); 193-206 September 2025 Reproducible R workflow 203

https://dx.doi.org/10.4314/mmj.v37i3.10

 value_labels_df <- enframe(value_labels, name = "variable", value = "labels") %>%
 filter(!sapply(labels, is.null)) # keep only variables with labels

 # Flatten into long format: variable, code, label
 value_labels_long <- value_labels_df %>%
 unnest_longer(labels) %>%
 rename(code = labels_id, label = labels) %>%
 rename(label = code, code = label) # swap to keep consistent

 # Save as an RDS
 saveRDS(value_labels_long, file.path(data_dir, paste0(base_name, "_val_labels.rds")))

 ##
 ## 3. APPLY VALUE LABELS TO THE DATA
 ##
 # Replace coded values (1, 2, 3) with their human-readable labels
 for (var in names(data)) {
 val_lab <- value_labels_long %>% filter(variable == var)
 if (nrow(val_lab) > 0) {
 lookup <- setNames(as.character(val_lab$label), val_lab$code)
 data[[var]] <- recode(as.character(data[[var]]), !!!lookup)
 }
 }

 ##
 ## 4. RENAME COLUMNS USING VARIABLE LABELS
 ##
 # This makes column names more descriptive (like 'Current smoking status' instead of 'q101')
 var_labels_cleaned <- var_labels %>%
 mutate(description = as.character(description)) %>%
 group_by(description) %>%
 mutate(n = n()) %>% # count duplicates
 ungroup() %>%
 mutate(description = if_else(n > 1, paste0(variable, ": ", description), description)) %>%
 select(variable, description)

 rename_vector <- var_labels_cleaned %>%
 filter(variable %in% names(data), !is.na(description), description != "") %>%
 deframe() # turn into named vector

 data <- data %>% rename_with(~ rename_vector[.x], .cols = names(data))

 ##
 ## 5. SAVE THE CLEANED DATASET
 ##
 # Saves as an .rds file for fast, safe loading in R later
 saveRDS(data, file.path(data_dir, paste0(base_name, "_cleaned.rds")))

 message(paste("✓ Processed and labeled:", base_name))
}

##
APPLY FUNCTION TO ALL .dta FILES

Malawi Medical Journal 37 (3); 193-206 September 2025 Reproducible R workflow 204

https://dx.doi.org/10.4314/mmj.v37i3.10

##
walk(dta_files, process_file)

##
MERGE ALL CLEANED FILES
##
This part reads all the *_cleaned.rds files,
converts 'stratum' and 'psu' to character if they exist
then combines them into a single dataset.

library(writexl) # for writing Excel files

List all cleaned files
cleaned_files <- list.files(data_dir, pattern = "_cleaned\\.rds$", full.names = TRUE)

Read and merge into one dataframe
merged_data <- map_dfr(cleaned_files, function(file) {
 df <- readRDS(file)

 # Convert stratum and psu to character to prevent merge issues
 df <- df %>%
 mutate(across(any_of(c("stratum", "psu")), as.character))

 return(df)
}, .id = "source_file") # adds a column showing which file each row came from

##
SAVE THE MERGED DATA
##
Save as RDS for R work, and Excel for easy sharing
saveRDS(merged_data, file = file.path(data_dir, "gtys_2000_2021.rds"))
write_xlsx(merged_data, path = file.path(data_dir, "gtys_2000_2021.xlsx"))

Malawi Medical Journal 37 (3); 193-206 September 2025 Reproducible R workflow 205

https://dx.doi.org/10.4314/mmj.v37i3.10

Load required libraries

These packages help you read data, handle labels, and clean datasets.
library(haven) # for reading Stata (or SPSS/SAS) files
library(dplyr) # for data manipulation
library(tidyr) # for reshaping data
library(tibble) # for working with tibbles
library(labelled) # for handling variable and value labels
library(readr) # for writing CSV files

Set file path

Adjust this to where your DHS or other data file is saved on your computer.
file_path <- "C:/Users/LENOVO/Documents/GitHub/Transparent_digital_health_2025/MWIR7HFL.DTA"

Read DHS dataset

This reads the Stata file into R. 'women' is now your data frame.
women <- read_dta(file_path)

1. Export variable labels

Many DHS datasets have descriptions for each variable (like "Age in 5-year groups").
This saves those descriptions into a CSV so you know what each variable means.
var_labels <- var_label(women) %>%
 enframe(name = "variable", value = "description")

write_csv(var_labels, "variable_labels.csv")
print("Saved variable labels to 'variable_labels.csv'.")

2. Export value labels

For categorical variables (like 1 = Rural, 2 = Urban), we save the mapping.
value_labels <- lapply(women, function(x) attr(x, "labels"))
value_labels_df <- enframe(value_labels, name = "variable", value = "labels") %>%
 filter(!sapply(labels, is.null))

Turn into a long format table: each row is variable, code, label.
value_labels_long <- value_labels_df %>%
 unnest_longer(labels) %>%
 rename(code = labels_id, label = labels)

write_csv(value_labels_long, "value_labels.csv")
print("Saved value labels to 'value_labels.csv'.")

3. List labelled (categorical) variables

Malawi Medical Journal 37 (3); 193-206 September 2025 Reproducible R workflow 206

https://dx.doi.org/10.4314/mmj.v37i3.10

This helps you see which variables have categories (like sex, region).
labelled_vars <- names(women)[sapply(women, function(x) !is.null(attr(x, "labels")))]
print("Variables with value labels (categorical variables):")
print(labelled_vars)

4. Create frequency tables

We'll pick some example variables. Adjust these to your dataset.
vars_to_freq <- c("v502", "v025", "v106") # e.g., marital status, place of residence, education

For each variable:
- Convert it to labelled factors so we see categories (not just numbers).
- Count how many observations fall into each category.
- Calculate percentages.
- Save the table as a CSV.

for (var in vars_to_freq) {
 if (var %in% names(women)) {
 freq_table <- women %>%
 mutate(temp = as_factor(.data[[var]])) %>% # convert to factor using labels
 count(temp, name = "count") %>% # count frequency
 mutate(percent = round(100 * count / sum(count), 1)) %>% # calculate %
 rename(label = temp) # nicer name

 # Save to CSV
 write_csv(freq_table, paste0("frequency_", var, ".csv"))
 print(paste("Saved frequency table for", var, "to", paste0("frequency_", var, ".csv")))
 } else {
 warning(paste("Variable", var, "not found in dataset"))
 }
}

