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A reproducible R workflow to preserve variable and 
value labels in Stata, SPSS, and SAS datasets for 
transparent and reproducible health research

Teaching Corner

Abstract
Introduction 
Large-scale health surveys like the Demographic and Health Surveys (DHS) and WHO STEPS are essential for tracking health trends 
and guiding policies in low- and middle-income countries. However, when these datasets are imported into tools like R, they often lose 
crucial metadata, variable and value labels, turning clear categories into cryptic codes. This slows analysis, risks errors, and weakens 
data reuse.
Methods 
We developed a reproducible workflow in R to import and process survey data while preserving variable and value labels. Using open-
source packages such as haven, labelled, and tidyverse, we automated reading of  datasets, extraction of  metadata, replacement of  
codes with readable labels, and renaming of  variables with full descriptions. The workflow was designed to be modular, easy to adapt, 
and accessible for analysts with basic R skills.
Results 
We tested the workflow on the contraceptive use module from the 2015/16 Malawi DHS and the tobacco use module from Malawi’s 
Global Youth Tobacco Survey. Without our process, variables appeared as vague codes (e.g., v312) and responses as plain numbers. 
After applying our workflow, these were transformed into clear, labelled categories like “Injectable” or “Never Married.” Frequency 
tables generated from the cleaned data were easier to interpret and share. This automated approach saved several hours of  manual 
recoding and reduced the risk of  errors.
Conclusion 
By maintaining metadata, our workflow improves transparency, reproducibility, and efficiency in digital health research. This supports 
better training, clearer communication, and more reliable use of  health data for policy and program decisions.
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Introduction
Routine health data collection in low- and middle-income 
countries (LMICs)  provided information at regular intervals 
on services and activities delivered in health facilities1. 
Programs like the Demographic and Health Surveys (DHS) 
and WHO’s STEPwise approach to noncommunicable 
disease surveillance (STEPS) have become the backbone of  
health monitoring in these settings. These large-scale surveys 
gather rich information on population health, providing 
critical evidence for policy and program decisions2. As LMICs 
increasingly adopt digital health strategies, ensuring that this 
routine data retains essential metadata, such as variable and 
value labels, is key for transparent analyses, comparability 
across studies, and building reliable digital health systems. 
In digital health research, large-scale datasets such as the 
Demographic and Health Surveys (DHS)3 and WHO STEP 
wise surveys (STEPS)4 play a critical role in informing public 
health policy, monitoring health trends, and guiding decision-
making. These datasets come with rich metadata, including 
variable labels that explain what each column represents, and 

value labels that describe coded responses5. However, when 
researchers import these files into statistical software like R, 
much of  this metadata can be lost or mishandled. As a result, 
variables appear with cryptic names (e.g., v106, q102) and 
responses are shown as numbers without context (e.g., 1, 2, 
3), making interpretation difficult and error-prone3.
Losing this metadata not only slows down analysis but 
also increases the risk of  misinterpretation, especially 
for researchers who are new to the dataset or working in 
collaborative teams5. In digital health, where datasets are 
often reused across countries and over time, preserving 
labels ensures consistency, transparency, and reproducibility6. 
When labels are not retained, important details such as the 
meaning of  categories, skip patterns, and question wording 
may be overlooked7. This can lead to incorrect analyses 
and conclusions, weakening the quality of  research and its 
potential to inform policy or digital interventions8. This 
study addresses a common but under-discussed problem 
in digital health data management: the loss of  variable and 
value labels during data import. By presenting a practical and 
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reproducible workflow in R, we aim to support researchers, 
especially those in low- and middle-income countries, in 
maintaining data integrity from the start5. Our approach 
ensures that health data retains its meaning and context, 
making analysis more accurate, communication clearer, and 
results easier to share and validate. In doing so, this study 
contributes to better data stewardship and more reliable 
digital health evidence.

Methods
This study used the R programming language to develop 
a simple and reproducible workflow for importing and 
working with health survey data while preserving variable 
and value labels9,10. We relied on key packages including 
haven (to read SPSS and Stata files)11, labelled (to extract and 
handle metadata)12, and tidyverse (for data wrangling and 
cleaning)13. These tools were chosen because they are open-
source, widely used in public health analytics, and compatible 
with a wide range of  data formats14. Together, they allow 
researchers to retain the full descriptive structure of  survey 
data, which is often lost in traditional data import steps.
To ensure the workflow is easy to replicate and adapt, all 
code was written in a modular format and documented using 
standard R scripts/markdown comments15. The process 
includes setting the file path, importing the dataset with 
all labels intact, extracting variable descriptions, flattening 
value labels into a readable format, and generating labelled 
frequency tables. Outputs such as CSVs for metadata and 
summary tables can be shared with collaborators or used 
directly in reports. The script is adaptable to any dataset and 
is designed to be used by analysts with basic R skills.
As proof  of  concept, we applied the workflow to two 
common modules: the contraceptive use section of  the 
2015/6 Malawi DHS (MWIR7HFL.DTA) from Measure 
DHS and the tobacco consumption section of  a Global 
Youth Tobacco Survey (MWI2009.dta) from NCD monitor. 
In both cases, we successfully preserved metadata that clearly 
defined coded responses such as types of  contraceptive 
methods and levels of  alcohol use. By maintaining the 
link between values and their labels, we improved the 
interpretability of  results and reduced the risk of  analytic 
errors10. These examples highlight how the approach can be 
used to support accurate, reproducible, and policy-relevant 
analysis in digital health studies15.

Ethical consideration
This study did not involve the collection of  new data from 
human participants. Instead, we used publicly available 
datasets from the 2015/16 Malawi Demographic and Health 
Survey (DHS) (https://dhsprogram.com/data/dataset_
admin/login_main.cfm) and the Malawi Global Youth 
Tobacco Survey (https://extranet.who.int/ncdsmicrodata/
index.php/catalog/147/variable/V212). These datasets 
were fully anonymized, with all personal identifiers removed 
before we accessed them. We followed all data use agreements 
set by the data custodians. Our work mainly served as a 
technical proof  of  concept to show how metadata can be 
preserved and linked to coded values, making analyses clearer 
and reducing mistakes. By doing this, we aimed to support 
more transparent and trustworthy research that can inform 
health policies without compromising participant privacy.

Results
Workflow to preserve variable and value labels in Stata, SPSS, 

and SAS datasets.
To preserve variable and value labels when working with 
datasets from Stata, SPSS, or SAS, start by using specialized 
R packages that can handle these formats without stripping 
metadata used the workflow in Figure 1. The haven package 
is especially useful because it reads .dta (Stata), .sav (SPSS), 
and .sas7bdat (SAS)11 files while keeping variable labels 
(describing what each column means) and value labels 
(explaining coded responses). Once imported, you can use 
the labelled package to easily view, manage, and convert these 
labels 12. For instance, you can extract variable descriptions 
into a separate table for documentation or apply value 
labels directly, so coded numbers instantly show up as clear 
categories like “Married” or “Never smoked.” After reading 
in and cleaning each dataset, the workflow continues by 
applying labels to the data so they become part of  summaries, 
plots, and exported files. Before exporting, rename columns 
to include full variable labels for better readability outside 
R. Finally, save the fully labelled dataset as an RDS file to 
preserve the structure for future analysis, or write it out to 
Excel or CSV along with a key that lists all variable and value 
meanings. This approach ensures your data always carries the 
full context, making it easier to interpret, share, and trust; 
whether it originally came from Stata, SPSS, or SAS.

Figure 1: A seamless R workflow for cleaning, labelling, and 
merging survey data

Merits of proposed workflow 
The workflow revealed significant differences in how data 
appears and is understood before and after label preservation. 
For instance, in the contraceptive use module of  the DHS 
dataset, the variable v312 appears as a numeric field without 
labels when imported using default methods. Without labels, 
values such as 1, 2, or 3 are meaningless to analysts unfamiliar 
with the coding. After applying the proposed workflow, those 
same values are automatically linked to their full descriptions, 
such as “Pill,” “IUD,” or “Injectable,” allowing for accurate 
interpretation without manual code lookups or referencing 
external codebooks (see Figure 2 (code: MMJ_Paper_Script_
Labelling_Values_13_July_2025_FINAL.R), Figure 3 (code: 
MMJ_Paper_Script_Labelling_Values_13_July_2025_
FINAL.R) and Figure 4 (code: MMJ_Paper_Script_13_
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July_2025_FINAL.R)).

Figure 2: A sample of the extracted value labels from the Malawi 
2015/6 women dataset

 

Figure 3: A sample of the extracted variable labels from the Malawi 
2015/6 women dataset
 

 

We also compared frequency tables generated with and 
without labels. Without labels, output tables contain only 
numbers, which require the user to cross-check codes in 
the original questionnaire or recode them manually. In 
contrast, when using the labelled data workflow, frequency 
tables present clean, readable summaries such as “Never 
Married,” “Married,” or “Widowed,” making it immediately 
clear what the distributions represent. This clarity improves 
the usability of  outputs for presentations, reports, and peer-
reviewed publications, especially for audiences with limited 
statistical training.

Option A: Frequency tables with vs. without labels

Without labels

Code: 

vars_to_freq <- c(“v502”, “v025”, “v106”)

# Create output folder if  needed

if  (!dir.exists(“Output”)) dir.create(“Output”)

for (var in vars_to_freq) {

  if  (var %in% names(women)) {

    

    # Use table() to count values

    tbl <- table(women[[var]])  

    # Turn into data frame

    freq_table <- as.data.frame(tbl)

    names(freq_table) <- c(“value”, “count”)

    # Calculate percentage

    freq_table$percent <- round(100 * freq_table$count / 
sum(freq_table$count), 1)   

    # Save CSV

    write_csv(freq_table, paste0(“Output/frequency_”, var, 

Figure 4: Combination of data with both variable and value labels for the 2009 Malawi Global Youth Tobacco Survey
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“.csv”))

    print(paste(“Saved frequency table for”, var))

  } else {

    warning(paste(“Variable”, var, “not found in dataset”))

  }

}

Output:

V502: Marital status

 

V025: Area of  residence

 

V106: Level of  education

With labels

Code: 

vars_to_freq <- c(“v502”, “v025”, “v106”)  # You may need 
to adjust names based on actual dataset

# Function to create and save frequency table for each 
variable

for (var in vars_to_freq) {

  if  (var %in% names(women)) {

    freq_table <- women %>%

      mutate(temp = as_factor(.data[[var]])) %>%

      count(temp, name = “count”) %>%

      mutate(percent = round(100 * count / sum(count), 1)) 
%>%

      rename(label = temp)

    write_csv(freq_table, paste0(“frequency_”, var, “.csv”))

  } else {

    warning(paste(“Variable”, var, “not found in dataset”))

  }

}

Ouput

V502: Marital status

 

V025: Area of  residence

V106: Level of  education

 

Option B: Frequency tables for the variable and 
value labels transformed 
The workflow not only improves readability but also reduces 
time and errors. Manual recoding and referencing of  
external codebooks are time-consuming, particularly in large 
datasets with hundreds of  variables. By automating label 
extraction and applying consistent formatting, our approach 
helps analysts avoid common mistakes such as mislabeling 
variables or misclassifying categories. In our case examples, 
label preservation and formatting saved several hours of  
manual work and eliminated the need for guesswork or 
repeated code verification, making the data analysis process 
more efficient and reliable.

After running the code (MMJ_Paper_Script_13_July_2025_
FINAL.R) on mwi2009.dta, we generated a dataset with 
both variable and value labels called merged_data.csv. Then 
we run the code below.

# Make sure packages are loaded

library(dplyr)

library(readr)

# List of  variables

vars_to_summarise <- c(“Tried smoking”, “Cigarettes per 
day”, “Own cigarette product brand logo”)

# Loop over each variable

for (var in vars_to_summarise) {
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  freq_table <- merged_data %>%

    count(!!sym(var), name = “count”) %>%

    mutate(percent = round(100 * count / sum(count), 1)) 
%>%

    rename(value = !!sym(var)) 

  # Print to console

  print(paste(“Frequency table for”, var))

  print(freq_table)

}

This code produced the following output:

Demerits of the proposed workflow

While this workflow greatly improves efficiency and helps 
keep data clear and well-labelled, it does come with a few 
downsides. It relies heavily on R and specific packages, which 
means users need at least basic R skills to run or adapt it. 
If  variable names or label structures change too much 
across files, the automated steps might not work perfectly 
and still require manual checks. Also, since it saves outputs 
in R-specific formats like .rds, people using other software 
may need extra steps to read the data. In short, while the 
workflow reduces many errors and saves time, it still needs 
some technical know-how and careful oversight to handle 
unusual or inconsistent datasets.

Converting the data to show variable and value 
labels
Converting the data to show both variable and value labels 
was a crucial part of  our process. Using our R script, we 
carefully unpacked each dataset to pull out the hidden 
meanings behind cryptic codes and column names5,12. We 
replaced raw numeric codes with their real-world labels, like 
turning a plain 1 or 0 into clear categories such as “Yes” or 
“No.” At the same time, we renamed the columns to display 
full variable labels, so instead of  vague names like q101, we 
now had straightforward titles like “Current tobacco use.” 
This not only made the data far easier to read and understand 
but also reduced the chance of  mistakes during analysis. By 
doing this, we transformed a dense, coded dataset into a 

clean, human-friendly table that clearly tells the story behind 
the numbers.

Extension when combining data from multiple 
surveys
To prepare multiple survey datasets for easy analysis, we first 
set up a workflow in R to automatically read and clean all .dta 
files in a specified folder. Using packages like haven, dplyr, 
tidyr, and labelled, the script reads each dataset, extracts the 
variable labels (like “Type of  tobacco used”) and the value 
labels (like 1 = “Yes”, 0 = “No”), and saves these as separate 
files13. It then attaches the value labels back to the actual 
data, replacing raw codes with meaningful descriptions. 
This makes the dataset more readable and minimizes the 
chance of  misinterpreting codes16. To avoid losing context, 
the script also renames the columns using their full variable 
labels, keeping them informative even outside specialized 

software like Stata17. Once all individual 
datasets are cleaned and labelled, the 
script gathers them into one combined 
file16. Before merging, it converts key 
survey design identifiers like stratum 
and psu into character type to prevent 
merge errors. The final merged dataset 
is then saved both as an RDS file for 
future analysis in R and as an Excel 
file for easy sharing17. This automated 
process ensures consistency, saves time, 
and gives a tidy dataset ready for analysis 
or reporting18,19.

Below are the key code snippets:

1.	 Loop through all .dta files and 
process them

dta_files <- list.files(data_dir, pattern = “\\.dta$”, full.
names = TRUE)

walk(dta_files, process_file)

2.Inside process_file, replace codes with labels and rename 
columns

# Apply value labels

for (var in names(data)) {

  val_lab <- value_labels_long %>% filter(variable == var)

  if  (nrow(val_lab) > 0) {

    lookup <- setNames(as.character(val_lab$label), val_
lab$code)

    data[[var]] <- recode(as.character(data[[var]]), !!!lookup)

  }

}

# Rename columns with variable labels

data <- data %>% rename_with(~ rename_vector[.x], .cols 
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= names(data))

3. Merge all cleaned datasets and export

cleaned_files <- list.files(data_dir, pattern = “_cleaned\\.
rds$”, full.names = TRUE)

merged_data <- map_dfr(cleaned_files, function(file) {

  df  <- readRDS(file)

  df  <- df  %>% mutate(across(any_of(c(“stratum”, “psu”)), 
as.character))

}, .id = “source_file”)

saveRDS(merged_data, file = file.path(data_dir, 
“gtys_2000_2021.rds”))

write_xlsx(merged_data, path = file.path(data_dir, 
“gtys_2000_2021.xlsx”))

Harmonisation of datasets
When working with surveys collected across different years 
or from multiple sources, the data often comes in slightly 
different shapes9. Variable names might change, codes for 
answers may be inconsistent, or important labels could be 
missing. Without careful cleaning, merging these datasets 
can easily produce errors or misleading results. That’s why 
data harmonisation is a key step before any analysis. In this 
work, we automated harmonisation using R10. Each dataset 
was first read in and cleaned by replacing raw codes (like 
1, 2, 3) with their actual meanings (like “Male”, “Female”, 
“Other”), based on the value labels stored in the original files. 
We also ensured that the columns carried clear descriptive 
names by applying the variable labels. After each individual 
dataset was cleaned and saved, we combined them into 
one big file. Before merging, we converted critical survey 
design identifiers such as stratum and psu into character 
type to keep things consistent. This entire process helped 
us standardise multiple datasets, making sure they spoke the 
same “language”. The result was a single tidy dataset that was 
ready for robust, error-free analysis and easy interpretation16.

Time saved or errors avoided
One of  the biggest wins from this approach was the time it 
saved and the errors it helped us avoid. By automating the 
process of  applying variable and value labels5, we skipped 
the tedious and error-prone manual recoding that often 
leads to mistakes19. This meant we did not have to keep 
checking codebooks or guessing what each number stood 
for. With clearly labelled data from the start, we avoided 
misclassifying responses or running faulty analyses based on 
misunderstood codes9. In short, this streamlined workflow 
not only cut down hours of  repetitive work but also gave us 
cleaner results we could trust.

Discussion
Preserving variable and value labels in health datasets is more 
than a technical concern it directly affects the reproducibility 
and integrity of  digital health research20,21. Inconsistent 
or missing metadata leads to misinterpretation, delays in 
analysis, and difficulties in replicating findings22. This is 
particularly problematic in digital health, where data-driven 
decisions influence policies, resource allocation, and program 
design23. Our approach supports reproducible research 

by ensuring that survey data maintains its full descriptive 
structure throughout the analytic workflow, allowing others 
to understand, verify, and replicate results with confidence.

The implications for training are also significant24. Many 
researchers and students in low- and middle-income 
countries work with large datasets like DHS or STEPS25,26 
but often lack access to proprietary software or detailed 
technical support. Providing a reproducible R workflow that 
maintains metadata helps bridge this gap10. It makes these 
datasets more accessible and easier to use in teaching settings, 
enabling new users to focus on data interpretation rather 
than data cleaning or codebook decoding. This contributes 
to building local capacity in data science and strengthens the 
pipeline of  skilled analysts in digital health27.
Moreover, preserving labels enhances data sharing and 
collaboration12. When datasets are stripped of  labels, shared 
files become harder to understand or reuse, especially across 
teams or institutions25,28. By exporting variable descriptions 
and value labels alongside the cleaned dataset, researchers 
can ensure that collaborators and secondary users interpret 
the data correctly29. This is especially valuable in multi-
country or multi-year studies, program evaluations, or open 
data platforms, where keeping consistency and meaning 
across datasets is essential.
Finally, this approach supports the broader goals of  open 
science30,31,32. By using open-source tools and emphasizing 
transparency in the data preparation process, we help make 
digital health research more inclusive and efficient 33 34. 
Analysts can document their data workflows clearly, share 
code and metadata publicly, and contribute to more equitable 
and trustworthy use of  health data 35 36. As the demand for 
real-time data and reproducible evidence grows, workflows 
like this one become increasingly important for the future of  
global digital health.
We recommend that researchers and analysts working with 
health survey data adopt this workflow early in their projects 
to maintain data clarity and avoid time-consuming manual 
relabelling later. It is best to keep a consistent folder structure, 
document each step, and always save intermediate outputs 
with clear filenames37. This makes it easier to track changes 
and revisit your work if  needed. We also suggest sharing 
both the cleaned datasets and accompanying metadata files, 
so collaborators can understand exactly what each variable 
and value means without digging into codebooks.

All the tools used in this workflow; haven 11, labelled 12, 
dplyr38, and tidyr13; are freely available as R packages on 
CRAN. The full scripts that power this process, including 
functions to read, label, clean, and merge datasets, are 
provided in well-commented R file that can be easily adapted 
to different surveys. To make this workflow even more 
accessible, we also highlight the opportunity to develop 
equivalent scripts in Python using libraries such as pandas, 
pyreadstat, and numpy39. This would allow analysts more 
familiar with Python to perform the same steps of  importing 
data, preserving variable and value labels, recoding, and 
merging multiple survey datasets40. The R script has been 
included in the paper as supplementary material. This way, 
other teams can replicate the workflow, adapt it to their 
own data, develop Python versions, and contribute further 
improvements.
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SUPPLEMENTARY FILES: 

# --------------------------
# Load required libraries
# --------------------------
# These packages help you read data, handle labels, and clean datasets.
library(haven)    # for reading Stata (or SPSS/SAS) files
library(dplyr)    # for data manipulation
library(tidyr)    # for reshaping data
library(tibble)   # for working with tibbles
library(labelled) # for handling variable and value labels
library(readr)    # for writing CSV files

# --------------------------
# Set file path
# --------------------------
# Adjust this to where your DHS or other data file is saved on your computer.
file_path <- "C:/Users/LENOVO/Documents/GitHub/Transparent_digital_health_2025/MWIR7HFL.DTA"

# --------------------------
# Read DHS dataset
# --------------------------
# This reads the Stata file into R. 'women' is now your data frame.
women <- read_dta(file_path)

# --------------------------
# 1. Export variable labels
# --------------------------
# Many DHS datasets have descriptions for each variable (like "Age in 5-year groups").
# This saves those descriptions into a CSV so you know what each variable means.
var_labels <- var_label(women) %>%
  enframe(name = "variable", value = "description")

write_csv(var_labels, "variable_labels.csv")
print("Saved variable labels to 'variable_labels.csv'.")

# --------------------------
# 2. Export value labels
# --------------------------
# For categorical variables (like 1 = Rural, 2 = Urban), we save the mapping.
value_labels <- lapply(women, function(x) attr(x, "labels"))
value_labels_df <- enframe(value_labels, name = "variable", value = "labels") %>%
  filter(!sapply(labels, is.null))

# Turn into a long format table: each row is variable, code, label.
value_labels_long <- value_labels_df %>%
  unnest_longer(labels) %>%
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  rename(code = labels_id, label = labels)

write_csv(value_labels_long, "value_labels.csv")
print("Saved value labels to 'value_labels.csv'.")

# --------------------------
# 3. List labelled (categorical) variables
# --------------------------
# This helps you see which variables have categories (like sex, region).
labelled_vars <- names(women)[sapply(women, function(x) !is.null(attr(x, "labels")))]
print("Variables with value labels (categorical variables):")
print(labelled_vars)

# --------------------------
# 4. Create frequency tables
# --------------------------
# We'll pick some example variables. Adjust these to your dataset.
vars_to_freq <- c("v502", "v025", "v106") # e.g., marital status, place of residence, education

# For each variable:
# - Convert it to labelled factors so we see categories (not just numbers).
# - Count how many observations fall into each category.
# - Calculate percentages.
# - Save the table as a CSV.

for (var in vars_to_freq) {
  if (var %in% names(women)) {
    freq_table <- women %>%
      mutate(temp = as_factor(.data[[var]])) %>% # convert to factor using labels
      count(temp, name = "count") %>%            # count frequency
      mutate(percent = round(100 * count / sum(count), 1)) %>% # calculate %
      rename(label = temp)                       # nicer name
    
    # Save to CSV
    write_csv(freq_table, paste0("frequency_", var, ".csv"))
    print(paste("Saved frequency table for", var, "to", paste0("frequency_", var, ".csv")))
  } else {
    warning(paste("Variable", var, "not found in dataset"))
  }
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############################################################
## LOAD REQUIRED LIBRARIES
############################################################
library(haven)    # for reading Stata (.dta) files while keeping labels
library(dplyr)    # for data manipulation (filter, mutate, rename, etc.)
library(tidyr)    # for reshaping data (unnest_longer)
library(tibble)   # for turning named lists into data frames
library(labelled) # for handling variable and value labels
library(purrr)    # for looping over lists elegantly
library(readr)    # for reading and writing files like CSV

############################################################
## SET DATA DIRECTORY
############################################################
# This is the folder containing all your .dta files
data_dir <- "C:\\Users\\LENOVO\\Documents\\GitHub\\Transparent_digital_health_2025"

############################################################
## LIST ALL .dta FILES IN THE FOLDER
############################################################
dta_files <- list.files(data_dir, pattern = "\\.dta$", full.names = TRUE)

############################################################
## DEFINE A FUNCTION TO PROCESS EACH FILE
############################################################
process_file <- function(file) {
  
  ## READ THE DATASET
  data <- read_dta(file)
  
  ## If these variables exist, assign them clear variable labels
  if ("year" %in% names(data)) var_label(data$year) <- "Year"
  if ("country" %in% names(data)) var_label(data$country) <- "Country"
  
  ## Get base file name (without extension) for naming output files
  base_name <- tools::file_path_sans_ext(basename(file))
  
  ############################################################
  ## 1. EXTRACT AND SAVE VARIABLE LABELS
  ############################################################
  # Variable labels describe what each variable means (like 'Current smoking status')
  var_labels <- var_label(data) %>%
    enframe(name = "variable", value = "description")
  
  # Save them as an RDS file for easy reference later
  saveRDS(var_labels, file.path(data_dir, paste0(base_name, "_var_labels.rds")))
  
  ############################################################
  ## 2. EXTRACT AND SAVE VALUE LABELS
  ############################################################
  # Value labels describe what the coded values mean (like 1 = 'Yes', 2 = 'No')
  value_labels <- lapply(data, function(x) attr(x, "labels"))
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  value_labels_df <- enframe(value_labels, name = "variable", value = "labels") %>%
    filter(!sapply(labels, is.null)) # keep only variables with labels
  
  # Flatten into long format: variable, code, label
  value_labels_long <- value_labels_df %>%
    unnest_longer(labels) %>%
    rename(code = labels_id, label = labels) %>%
    rename(label = code, code = label)  # swap to keep consistent
  
  # Save as an RDS
  saveRDS(value_labels_long, file.path(data_dir, paste0(base_name, "_val_labels.rds")))
  
  ############################################################
  ## 3. APPLY VALUE LABELS TO THE DATA
  ############################################################
  # Replace coded values (1, 2, 3) with their human-readable labels
  for (var in names(data)) {
    val_lab <- value_labels_long %>% filter(variable == var)
    if (nrow(val_lab) > 0) {
      lookup <- setNames(as.character(val_lab$label), val_lab$code)
      data[[var]] <- recode(as.character(data[[var]]), !!!lookup)
    }
  }
  
  ############################################################
  ## 4. RENAME COLUMNS USING VARIABLE LABELS
  ############################################################
  # This makes column names more descriptive (like 'Current smoking status' instead of 'q101')
  var_labels_cleaned <- var_labels %>%
    mutate(description = as.character(description)) %>%
    group_by(description) %>%
    mutate(n = n()) %>%             # count duplicates
    ungroup() %>%
    mutate(description = if_else(n > 1, paste0(variable, ": ", description), description)) %>%
    select(variable, description)
  
  rename_vector <- var_labels_cleaned %>%
    filter(variable %in% names(data), !is.na(description), description != "") %>%
    deframe() # turn into named vector
  
  data <- data %>% rename_with(~ rename_vector[.x], .cols = names(data))
  
  ############################################################
  ## 5. SAVE THE CLEANED DATASET
  ############################################################
  # Saves as an .rds file for fast, safe loading in R later
  saveRDS(data, file.path(data_dir, paste0(base_name, "_cleaned.rds")))
  
  message(paste("✓ Processed and labeled:", base_name))
}

############################################################
## APPLY FUNCTION TO ALL .dta FILES
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############################################################
walk(dta_files, process_file)

############################################################
## MERGE ALL CLEANED FILES
############################################################
# This part reads all the *_cleaned.rds files,
# converts 'stratum' and 'psu' to character if they exist
# then combines them into a single dataset.

library(writexl)  # for writing Excel files

# List all cleaned files
cleaned_files <- list.files(data_dir, pattern = "_cleaned\\.rds$", full.names = TRUE)

# Read and merge into one dataframe
merged_data <- map_dfr(cleaned_files, function(file) {
  df <- readRDS(file)
  
  # Convert stratum and psu to character to prevent merge issues
  df <- df %>%
    mutate(across(any_of(c("stratum", "psu")), as.character))
  
  return(df)
}, .id = "source_file")  # adds a column showing which file each row came from

############################################################
## SAVE THE MERGED DATA
############################################################
# Save as RDS for R work, and Excel for easy sharing
saveRDS(merged_data, file = file.path(data_dir, "gtys_2000_2021.rds"))
write_xlsx(merged_data, path = file.path(data_dir, "gtys_2000_2021.xlsx"))
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# --------------------------
# Load required libraries
# --------------------------
# These packages help you read data, handle labels, and clean datasets.
library(haven)    # for reading Stata (or SPSS/SAS) files
library(dplyr)    # for data manipulation
library(tidyr)    # for reshaping data
library(tibble)   # for working with tibbles
library(labelled) # for handling variable and value labels
library(readr)    # for writing CSV files

# --------------------------
# Set file path
# --------------------------
# Adjust this to where your DHS or other data file is saved on your computer.
file_path <- "C:/Users/LENOVO/Documents/GitHub/Transparent_digital_health_2025/MWIR7HFL.DTA"

# --------------------------
# Read DHS dataset
# --------------------------
# This reads the Stata file into R. 'women' is now your data frame.
women <- read_dta(file_path)

# --------------------------
# 1. Export variable labels
# --------------------------
# Many DHS datasets have descriptions for each variable (like "Age in 5-year groups").
# This saves those descriptions into a CSV so you know what each variable means.
var_labels <- var_label(women) %>%
  enframe(name = "variable", value = "description")

write_csv(var_labels, "variable_labels.csv")
print("Saved variable labels to 'variable_labels.csv'.")

# --------------------------
# 2. Export value labels
# --------------------------
# For categorical variables (like 1 = Rural, 2 = Urban), we save the mapping.
value_labels <- lapply(women, function(x) attr(x, "labels"))
value_labels_df <- enframe(value_labels, name = "variable", value = "labels") %>%
  filter(!sapply(labels, is.null))

# Turn into a long format table: each row is variable, code, label.
value_labels_long <- value_labels_df %>%
  unnest_longer(labels) %>%
  rename(code = labels_id, label = labels)

write_csv(value_labels_long, "value_labels.csv")
print("Saved value labels to 'value_labels.csv'.")

# --------------------------
# 3. List labelled (categorical) variables
# --------------------------



Malawi Medical Journal 37 (3); 193-206 September 2025 Reproducible R workflow 206

https://dx.doi.org/10.4314/mmj.v37i3.10

# This helps you see which variables have categories (like sex, region).
labelled_vars <- names(women)[sapply(women, function(x) !is.null(attr(x, "labels")))]
print("Variables with value labels (categorical variables):")
print(labelled_vars)

# --------------------------
# 4. Create frequency tables
# --------------------------
# We'll pick some example variables. Adjust these to your dataset.
vars_to_freq <- c("v502", "v025", "v106") # e.g., marital status, place of residence, education

# For each variable:
# - Convert it to labelled factors so we see categories (not just numbers).
# - Count how many observations fall into each category.
# - Calculate percentages.
# - Save the table as a CSV.

for (var in vars_to_freq) {
  if (var %in% names(women)) {
    freq_table <- women %>%
      mutate(temp = as_factor(.data[[var]])) %>% # convert to factor using labels
      count(temp, name = "count") %>%            # count frequency
      mutate(percent = round(100 * count / sum(count), 1)) %>% # calculate %
      rename(label = temp)                       # nicer name
    
    # Save to CSV
    write_csv(freq_table, paste0("frequency_", var, ".csv"))
    print(paste("Saved frequency table for", var, "to", paste0("frequency_", var, ".csv")))
  } else {
    warning(paste("Variable", var, "not found in dataset"))
  }
}


